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Abstract. The effective tcZ vertex may be influenced by tree dd′Z vertex formed by a mixing with heavy
exotic isosinglet down type quarks. To study that the electroweak penguin diagrams involving one insertion
of the dd′Z vertex have been considered and we have calculated the contribution arising out of those
diagrams using the Fourth Generation CKM matrix elements; also the applicability of the generalized
GIM mechanism is considered. The additional effects of the heavy isosinglets are compared with the effects
of exotic heavy isodoublets appearing in multi-generational models. We see that in the effective vertex
amplitude, the down flavour changing contribution interferes constructively with the one loop penguin
diagrams and experimental data may put constraint on the fourth generation down quark mass.

1 Introduction

It is admitted fact that due to the unitarity of the CKM
(Cabbibo Kobayashi Maskawa) matrix [1] in the Flavour
Changing Neutral Current (FCNC) processes in the Stan-
dard Model (SM) [2] the leading order mass independent
term is strongly suppressed by GIM [3] cancellation mech-
anism and this is experimentally confirmed and this paves
the way for investigating the new sources of FCNC. So
the study of virtual effects opened hydraheaded windows
on electroweak symmetry breaking and physics beyond
the SM. The examination of these indirect effects of new
physics in higher order processes yields a complimentary
approach to the search for direct production of new par-
ticles at high energy colliders.

On FCNC of radiative b decays a review by Greub et
al. on the next-to-leading logarithmic results has appeared
in proceedings of a recent Symposium [4]. Chetyrkin et al.
[5] have obtained the results for three loop anomalous di-
mensions while analyzing B → Xsγ decay and report the
branching ratio B(B → Xsγ) to be (3.28 ± 0.33) × 10−4.
The predictions of the Standard Model are in conformity
with the CLEO data at 2σ level. The new results opened
the scope for investigations in various classes of mod-
els, namely: Anomalous Top-Quark Couplings [6], Anoma-
lous Trilinear Gaube Couplings [7], Fourth Generation
[8], Two-Higgs-Doublet Model [9], Three-Higgs-Doublet
Model [10], Supersymmetry [11], Extended Technicolour
[12], Leptoquarks [13], Left-Right Symmetric Models [14].

Apart from these models, in the line of investigation
conducted recently in LEP we are contemplating the exis-
tence of a new U(1) gauge boson coupling predominantly
to the third family and it may have the consequence of
enhancing the b quark decay modes [15]. The sources of

FCNC may also be coming from (i) the ratios between the
masses of fermions involved in the FC transitions, or (ii)
some new mass scale of the order of electroweak break-
ing scale or it may be larger than this where it may arise
from mixing between the light fermions and new heavy
states with non-standard SU(2)L assignments [16–19] or
from Multi-Higgs Doublets Model without natural flavour
conservation [20, 21] or by horizontal symmetries [22] in
fermion mass hierarchy. Due to the fact that the fermion
masses are small the effects are naturally suppressed. But
now the appearance of the top quark into the picture with
heavy mass of 180 GeV has changed the scenario abruptly
where the FC transition involves the t quark. Of late inves-
tigation is going on at the phenomenological level [23–25]
and also for model building [20, 21].

Here we try to find out to what extent the effective
tcZ vertex is modified by inserting a tree level dd′Z FCNC
vertex, assuming mixing between d, s, b quarks and new
isosinglet heavy states of charge − 1

3 .

2 Calculation of tcZ vertex without FCNC

One loop diagram for the tcZ vertex is given in Fig. 1. The
blob in the diagram represents the self-energy part of the
t ↔ c transition. The one loop diagrams for this transition
are shown in Fig. 2. The induced tcZ vertex takes the form

A
(i)
Zµ

=
g3

(4π)2c
U∗

cjUtj(c̄LγµtL)Ai (1)

where i = a, b, . . . , h. We now write the one loop con-
tribution to the tc̄Z coupling by a direct summation of
Feynman graphs defined in (1) for each of the diagrams in
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Fig. 1. The one-loop diagrams contributing to the induced tcZ
vertex. The blob in the diagram a and b represents self-energy
part of the t ↔ c transition

Fig. 1 as follows:

A(a+b) = −
[
1
2
(Q − 1) sin2 θW +

1
4

]

×
[

x2
j

(xj − 1)2
lnxj − xj

xj − 1
− xjf1(xj)

]

−(xj → x1) , (2)

A(c) =
(

1
2
Q sin2 θW − 1

4

)
x2

j

(xj − 1)2
lnxj

+
1
2

xj

(xj − 1)2
lnxj

−
(

1
2
Q sin2 θW +

1
4

)
xj

xj − 1
− (xj → x1) , (3)

A(d) = −1
2
Q sin2 θW

(
1 − 2

n

)
xjf2(xj)

+
1
4
(Q sin2 θW − 1)

×
[

x2
j

(xj − 1)2
lnxj − xj − xj

xj − 1

]

−(xj → x1) , (4)

A(e) =
3
2
(1 − sin2 θW )

[
x2

j

(xj − 1)2
lnxj − 1

xj − 1

]

−(xj → x1) , (5)

A(f+g) = sin2 θW

[
x2

j

(xj − 1)2
lnxj − xj

xj − 1

]

−(xj → x1) , (6)

A(h) =
(

1
2

− sin2 θW

)
{

1
4

[
x2

j

(xj − 1)2
lnxj − xj

xj − 1

]
− 1

n
xjf2(xj)

}

−(xj → x1) . (7)

where xj = m2
j

m2
W

, mj is the mass of dj quark, and Q = − 1
3 ,

the charge fo the internal down type quarks; we assume
m1 to be very small as compared to others.

f1(x) = − 1
n − 1

− 1
2
(−γE + ln(4π) − lnm2

W )

+
3
4

− 1
2

(
x2

(x − 1)2
lnx − 1

x − 1

)
, (8)

f2(x) = − 2
n − 4

− γE + ln(4π) − lnm2
W

+1 − x

(x − 1)
lnx . (9)

γE is Euler-Mascheroni constant. Thus to find AtcZ
j for

the d1 and dj the internal quarks in the loop we sum all
the Ai’s and we get the Rξ gauge as

AtcZ(xj) ≡
h∑

i=1

Ai

=
1
4
xj − 3

8
1

xj − 1
+

3
8

2x2
j − Xj

(xj − 1)2
lnxj

+
1

ξxj − 1

(
3
4

1
xj − 1

+
1
8

1
ξxj − 1

)
xj lnxj

−1
8

1
ξ

1
ξxj − 1

[(
5ξ + 1
ξ − 1

− 1
ξxj − 1

)
ln ξ + 1

]
(10)

We see that the final result is independent of the internal
quark charge and pole at n = 4 for (2), (4) and (7) are
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eliminated when summed. We further note that A(f+g)

does not contain any divergent integral and those in A(c)

and A(e) are killed by GIM cancellation mechanism due to
unitarity of the CKM matrix. And so in ’t Hooft-Feynman
gauge where ξ = 1, one gets

Awithout FC
ef f =

g3

(4π)2 cos θW
(c̄LγµtL)

 ∑
d=d,s,b

ξdAtcZ(xd)


 (11)

with ξi = V ∗
ciVti, and xd = m2

d

m2
W

. Now the above expression
is not gauge invariant by itself. To make it gauge invariant
one has to add box diagrams for the processes t → cll̄, with
l = ν, l±.

Introducing the Inami and Lim function [26]

F (x) =
5
2

[
1

x − 1
− x lnx

(x − 1)2

]
(12)

we have physical gauge invariant quantity for the decay
amplitude

Awithout FC
ef f

=
g3

(4π)2 cos θW
 ∑

d=d,s,b

ξd(AtcZ(xd) + F (xd))


 (c̄LγµtL) . (13)

3 General formulation

We assume the existence of n new Q = −1/3 isosinglet
L-handed quarks D0

L. They can appear in vector like mul-
tipletes D0

L, D0
R and they are mixed with unknown down

type quarks d0
L, d0

R. The number n of D0
L − D0

R pairs is
not that relevant for our formulation in general and so we
keep it unspecified for the present. D0

R and d0
R, being both

colour triplet Q = −1/3 isosinglet states, have the same
gauge quantum numbers, and then their coupling to the
gauge bosons are unaffected by the mixing. This is not the
case for the L-chirality states. The vector

D0
dL =

(
d0

D0

)
L

of the doublet (d0) and the singlet (D0) gauge eigenstates
is related to the corresponding vector of the “light” (d)
and “heavy exotic” (D) mass eigenstates

DdL =
(

d
D

)
L

through a unitary matrix II (which is a 3×3 matrix) such
that (

d0

D0

)
L

=
∏(

d
D

)
(14)

∏
=
[

P Q
R S

]
(15)

here D = [b1, b2, . . . , bn]T and d = [d, s, b]T . Yet
∏

is uni-
tary P and R are not themselves unitary. In the weak basis,
the charged fermion neutral current shall contain P †P and
R†R which are not necessarily diagonal and thus the mix-
ing in general induces FCNC’s among the light paricles. In
order to avoid this problem, the assumption [18] which is
made is that each ordinary left- and right-handed fermion
mix with its own exotic partner. In this case P †P and R†R
are diagonal and thus eliminating FCNC’s. With this as-
sumption we can write (P †

aPa)ij = (ci
a)2δij , (R†

aRa)ij =
(si

a)2δij , a = Left, Right. Here (si
a)2 ≡ 1− (ci

a)2 ≡ sin2 θi
a,

where θi
Left(Right) is the mixing angle in the ith Left-

handed(Right-handed) ordinary fermion and its exotic part-
ner. The unitary of

∏
implies

∏†∏ =
∏∏† = Unit Ma-

trix, and so

P †P + R†R = PP † + QQ† ≡ I3×3

≡
( 1 0 0

0 1 0
0 0 1

)
(16)

We now introduce a unitary matrix ∆ (a 3×3 matrix) for
the L-handed up type quarks, so that

u0
L = ∆uL

∆∆† = ∆†∆ = I3×3 (17)

We now introduce a (3 + n) × 3 matrix1 X given by

X =

( 1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

)
(18)

and with the help of (1) we write the Charged Current
(CC) coupled to the W± bosons as

1
2
JW

µ = u0
LγµXD0

dL

= uLγµ∆†X
∏

DdL (19)

From above we see that we can define a 3× (3+n) mixing
matrix V given by

V = ∆†X
∏

≡ [Vd3×3 VD3×n

]
=

[
Vud Vus Vub Vub1 . . . Vubn

Vcd Vcs Vcb Vcb1 . . . Vcbn

Vtd Vts Vtb Vtb1 . . . Vtbn

]
(20)

We identify Vd3×3 as the usual 3 × 3 Cabbibo Kobayashi
Maskawa (CKM) matrix [1] for the light states d and we
see that it is not unitary. We see from (16), (17) and (20)

V V † = ∆†X†∏∏†
X∆

= I3×3 (21)
1 Such choice is made due to the arrangement of the CKM

matrix; where the insertion of the exotic down type quarks can
be made by augmenting in columns. While the insertion of the
up type will require augmenting in rows.
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Thus V is analogous to the unitary CKM matrix.
Now for θW ‘Weinberg weak mixing angle’, s = sin θW ,

c = cos θW , and we define a (3 + n) × (3 + n) matrix

I3 = X† × X ≡
(

I3×3 0
0 0

)
(22)

the projector operator acting on the L-handed 1
2 isospin

doublet states; and we can write the neutral current (NC)
coupled to the Z boson in terms of the mass eigenstates,
as

1
2
JW

µ = −1
2
DdLγµ∆†I3∆DdL

−s2DdγµEDd (23)

In (23) the second term remains flavour diagonal since the
matrix of electric charge E is proportional to the Identitiy
i.e., E = −1

3 × Identity. But when we consider the current
matrix, the isospin part 1

2I3 is not proportional to the
Identity, and therefore the corresponding isospin couplings
are Flavour Changing.

Let us now define the Neutral Current mixing matrix
as N =

∏†
I3
∏

. We see that N is not unitary, and it is
(3 + n) × (3 + n) matrix.

But from (17) and (20) we get

N = V †V ,

N †N = N 2 = N , and
V N = V (24)

we see that N is idempotent since from the definition of
N we can interpret N as the projection operator on the
L-doublets written on the basis of mass eigenstates.

On actual calculation we see that Ndd = 0.9796, and
Nss = 0.9953 all ≈ 1. Now we may note further that
Ndd ≈ Nss ≈ 1 because of the experimental bounds on
the left handed down and strange quarks which are flavour
diagonal and we note again that as

n∑
a=1

Naa = Tr(V †V ) = 3 (25)

we get
∑n

a=3 Naa ∼ 1. Further we may note that N is not
symmetric, Ndd′ 6= Nd′d.

Now V V † = I3×3, and V N = V implies V NV † =
V V † = I3×3 and so all the mass independent terms in the
new penguin diagrams which carry structure V NV † are
cancelled off in spite of the presence of the FC couplings.
Actually we can write from (21) and (24)∑

jk

V ∗
ck(δjk − Njk)Vtj = 0 (26)

Now following [27] we get the usual SM L-handed and
R-handed chiral couplings of down type quarks as

gd
L = −1

2
+

1
3
s2, and

gd
R =

1
3
s2 (27)

c dj,d1 t

W+ φ+

c dj,d1 t

Fig. 2. The one-loop contributing to the self-energy part of
the t ↔ c transition; the blob in Fig. 1

c t
Vck VtjDdj Ddk

δkj – Nkj

Zµ

W+, φ+

PL*

Fig. 3. Electroweak penguin diagrams with W boson and
scalar φ which include the flavour changing vertex Nkj,j 6=k. The
relevant mixing matrices appearing at the vertices are shown
explicitly, and PL = 1

2 (1−γ5) is the L-handed chiral projector.
The quarks are denoted by →; W , φ are denoted by − · −· →
and Z is denoted by − − −

Table 1. Function against masses in GeV x = mass2

m2W

Function 0.015 0.15 4.5
AtcZ(x) 1.25 1.24998 1.2456
F (x) −2.50 −2.4999 −2.46228
Total −1.25 −1.2499 −1.2167

From (23) it is evident that L-handed down quark cou-
pling is changed for mixing with the new isosinglets and
introduces an FC term. For the sake of generality we write
Ddi

Ddj
Z coupling as

gij
L = −1

2
Nij +

1
3
s2δij

= gd
Lδij +

1
2
(δij − Nij)

Where i, j = d, s, b, b1, b2, . . . , bn . (28)

The term gd
L represents the extension of SM to 3 + n L-

handed doublets with no tree level FCNC and the term
1
2 (δij − Nij) shows that the new n states are isosinglets.

The first term gives us scope to compare results for the
isosinglets case with those of a multigenerational model.
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Further, from (28) we see that the calculation of effective
tcZ vertex in presence of the tree level FC couplings can be
done by calculating SM contribution [27] extended to 3+n
generations and by computing two additional diagrams
given in Fig. 3 which arise from the second term in (28).

4 Calculation of FC amplitude
by inclusion of exotic down quarks

The amplitude for the sum of the one loop penguin di-
agrams which do not contain any insertion for the FC
couplings in the ’t Hooft-Feynman gauge is given in (11)
and the physical gauge invariant quantity for the decay
amplitude is given in (13).

Now we turn our attention to the second term in (28),
namely: 1

2 (δij −Nij). We have considered new states to be
isosinglet so there shall be no extra contributions from the
FC couplings. The diagram corresponding to this term as
stated earlier is given in Fig. 3. The loops at W boson or
the scalar φ is logarithmically divergent. But the Chiral
projection operator PL = 1

2 (1 − γ5) reduces the degree of
divergence by a factor 2 thus the divergence is eliminated.

From (26) we see that when we sum over all the d and
D, all the terms independent of d and D masses and in
particular the poles at n = 4 are wiped out like the GIM
cancellation law and thus leading to finite contribution
from the diagram involving W boson loop.

Now we write the amplitude obtained from the second
term in (28) as

Awith FC
ef f = AW + Aφ

=
g3

(4π)2 cos θW
(29)

∑
k,j

V ∗
ck(δkj − Nkj)VtjF (xk, xj)


 (c̄LγµtL)

where

F (x, y) =
1

4(x − y)

(
y − 1
x − 1

x2 lnx − x − 1
y − 1

y2 ln y

)
(30)

Where k, j runs over d, s, b, b1, b2, . . . , bn. We may note
that (29) is also gauge invariant.

Amplitude for the effective tcZ vertex now can be writ-
ten as

AtcZ = AwithoutFC
ef f + AwithFC

ef f

=
g3

(4π)2 cos θW


 ∑

d=d,s,b

ξd(AtcZ(xd) + F (xd))




(c̄LγµtL)

+
g3

(4π)2 cos θW
∑

d,d′
V ∗

cd(δdd′ − Ndd′(Vtd′F (xd, xd′)))




(c̄LγµtL) (31)

Now we see that as x → y,

F (x, y) → x

4
− x lnx

2(x − 1)
= F1(x) (32)

which is included in AtcZ(x).
Then we can write the amplitude as

AtcZ =
g3

(4π)2 cos θW
 ∑

d=d,s,b

ξd(AtcZ(xd) + F (xd))


 (c̄LγµtL)

+
g3

(4π)2 cos θW(
bn∑
d

V ∗
cd(1 − Ndd)VtdF1(xd)

)
(c̄LγµtL)

− g3

(4π)2 cos θW
d6=d′∑

d,d′
(V ∗

cdNdd′Vtd′)F (xd, xd′)


 (c̄LγµtL) (33)

Thus from the note below (24) we see that for the
second sum in the above expression first two terms are
not contributing much and contributions are coming from
the bottom quark and b1, b2, . . ..

5 Results and discussion

We first turn our attention to the matrices V and N .
As stated earlier VL is not unitary and following [18] the
elements can be written as

VL ij = cui

L c
dj

L V̂L ij (34)

where V̂L is usual unitary CKM matrix. The values of cui

L

and c
dj

L are calculated from the values of s’s collected from
[28] given below:

(sd
L)2 = 0.0023, (sd

R)2 = 0.019
(ss

L)2 = 0.0036, (ss
R)2 = 0.021

(sc
L)2 = 0.0042, (sc

R)2 = 0.010

(sb
L)2 = 0.0020, (sb

R)2 = 0.010

Now we calculate the amplitude AtcZ given in (33) in units
of g3

(4π)2 cos θW
(c̄LγµtL) term by term. We have used the

CKM matrix elements from the Fourth Generation calcu-
lated in [29].

We take md = 0.015 GeV, ms = 0.15 GeV, mb =
4.5 GeV and mW = 80.22 GeV. The first term of (33) is
without FC. The values of the functions AtcZ(x) and F (x)
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Table 2. Function against masses in GeV x = mass2

m2W

Function 0.015 0.15 4.5 50 100 150 20
F1(x) −2.8 × 10−7 −2.1 × 10−5 −8.3 × 10−3 −0.203 −0.229 −2.479 +0.46

Table 3. Function F (xd, xd′) for d 6= d′ x = mass2

m2W

Quark mixing→
↓ s b b1 b2 b3 b4

d −1.1 × 10−5 −4.5 × 10−3 −0.150 −0.309 −0.438 −0.5443
s −4.55 × 10−3 −0.150 −0.309 −0.438 −0.5443
b −0.151 −0.309 −0.437 −0.5429
b1 −0.279 −0.348 −0.4072
b2 −0.180 −0.1354
b3 +0.1669

and the total, for the internal quarks d, s and b are given
in Table 1.

So we see that all are of the same order; but calculat-
ing the first term d contributes ∼ −0.0294, s contributes
∼ −0.0722 and b contributes ∼ +0.09 resulting in total
value ∼ −0.0116, i.e., 39.5% of the contribution is coming
from the b quark in absolute value.

Next we look into the second term of (33). The F1(x) is
calculated against mass of exotic down type quark namely:
b1 = 50 GeV, b2 = 100 GeV, b3 = 150 GeV, and b4 =
200 GeV, given in Table 2.

This term is also flavour diagonal and dominant con-
tributions is coming from the large masses of exotic D.
The order of contribution form d is ∼ 10−12 and that of s
is ∼ 10−8 which can be neglected. The contributions from
others are b ∼ +5.548×10−5, b1 ∼ −0.026, b2 ∼ −0.0044,
b3 ∼ −5.386, and b4 ∼ +0.0108. Thus up to b quark
contribution is to the order 10−4, b1, b2, b3 gradually aug-
ments negative values but considering up to b4 the total
contribution of the second term changes sign and it be-
comes +0.0038. Thus b1, b2, b3 contributes constructively
but the consideration of b4 acts destructively on the am-
plitude.

Now for the third term which is the additional effect
of the FC vertices we note the following:

(i) F (x, y) is a symmetric function of x,y; F (x, y) =
F (y, x).

(ii) For small values of quark masses its value is neg-
ligibly small, but incorporation of exotic D quarks brings
the intergenerational mixing to a comparable value but it
remains negative till b4 is considered as seen from Table 3.

We have considered here seven down quarks; four ex-
otic quarks in addition to d, s and b. For intergenerational
mixing each has six mixing terms; the contribution for
each quark considered first are given in Table 4.

The cumulative value at each stage is negative; yet
while considering b contribution which is positive reduces
the third term a bit.

Thus we see that exotic quark mixing acts construc-
tively on the tcZ vertex amplitude as seen from Table 5.

Table 4.

Considered up to Values of the Cumulative
the quark third term value
d −0.002697 −
s −0.045565 −0.05179
b +0.015073 −0.03672
b1 −0.008694 −0.04541
b2 −0.007973 −0.05338
b3 −0.012634 −0.06602
b4 −0.015024 −0.08104

Table 5. Values of AtcZ in units of g3

(4π)2 cos θW
(c̄LγµtL)

Without FC −0.0116
Up to second term up to b3 −0.0186
− up to b4 −0.0078
Up to third term up to b3 −0.0846
− up to b4 −0.0888

We see a large enhancement over the SM value and
consideration of the second term actually matters little.
Thus the experimental data may put constraints on the
exotic down type quark masses and as we expect progres-
sively increasing values the introduction of exotic down
type heavy singlets slowly augments the decay rate and
we get a clear testing ground to investigate the presence
of Fourth Generation.

6 Conclusion

The size of the contribution to the effective tcZ vertex
of the new penguin diagrams induced by a dd′Z vertex is
not bounded rather we see large enhancement over the SM
result. Hence the experimental upper limits on t → cl+l−
and on t → cνν̄ may put constraint on the exotic quark
masses and may help investigation of the existence of the
Fourth Generation.
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